Маркетинговые исследования

0(у,а) = (у - х - а) ЯЬ (1 - у /уЬ) (1 + а/а1) - Ь . (5.88)

Рассмотрим вначале ситуацию с фиксированной ценой

продажи. Исследование выражения (5.88) показывает, что

205

дополнительный расход на улучшение дизайна может оправ­дать себя только при выполнении необходимого и достаточного неравенства

а,   < (у - х) .                                  (5.89)

При этом наилучшим расходом, обеспечивающим наи­больший темп прибыли, является расход

а0* = (1 /2) (у - х - аЬ) .                             (5.90)

Обратим внимание на различие выражений (5.90) и (5.71). Видно, что наилучший расход на дизайн а* зависит от режима сбыта товара.

Графически зависимость темпа прибыли от расхода а показана на рис. 5.22. Здесь

а0°=2а*.                                     (5.91)

в(а)л.

Рис. 5.22.

При расходе (5.90) наибольший возможный темп прибыли равен

0(у, а0 *) = Яь (1 - у /у,) (у - х + а,) 2 /4аь - Ь . (5.92)

Сравнивая выражение (5.90) с выражением (5.88), взятым при отсутствии дополнительного расхода на дизайн (то есть при а = 0), получаем выражение для наибольшего выигрыша в темпе прибыли:

0(у, ао*) - 0(у,0) = Я, (у - х - а,)2 (1 - у/уь)/4аь . (5.93)

Пример 5.16

Подсчитаем наилучший расход на дизайн и выигрыш в темпе прибыли при таких численных данных:

у - х = 1 $, ЯЬ = 500/дн., у/уЬ = 0,6.

Из формулы (5.89) следует, что реклама является оправдан­ной, если рыночный параметр аЬ < 1 $ . Результаты расчёта по формулам (5.90) и (5.92) представим в виде таблицы. Здесь АО = 0(у,а*) - 0(у,0) ;

величины аЬ и а.* даны в долларах, АО - в $/ дн. Из этой таблицы видно, как быстро нарастает темп прибыли при уменьшении рыночного параметра аЬ .

ТАБЛИЦА - 5.4

аь

а * “о

ЛО

0,9

0,05

0,56

0,8

0,1

2,50

0,7

0,15

6,43

0,6

0,2

13,3

0,5

0,25

25,0

0,4

0,3

45,0

0,3

0,35

81,7

0,2

0,4

160

0,1

0,45

405

 

Проведём теперь максимизацию выражения (5.88) одно­временно по цене продажи у и по расходу на дизайн а. Исследование показывает, что такая максимизация возможна при выполнении условия

уЬ > х + 2аЬ .                                 (5.94)

Наибольшая величина темпа прибыли достигается при таких значениях рекламного расхода и цены продажи:

у0** = (1/3) (2уь + х - а.) ;                            (5.95)

а0** = (1/3) (у. -х - 2а.) .                             (5.96)

Запишем для этих значений темп сбыта и темп прибыли:

Я(у.**, а.**) = (Я,/9а,у,) (у, -х + а,)2; (5.97) ((уо**, а.**) = (Я,/27а, у,) (у, - х + а,)3 - Ь . (5.98) Пример 5.17

Рассчитаем оптимальные цены (5.95) и (5.96) и со­путствующие им величины (5.97), (5.98) при таких данных: уЬ = 5 $, а, = 1 $, х = 1 $, Я, = 500/ дн., Ь = 200 $ / дн. Получаем:

у(** = 3,33 $, а** = 0,67 $,

Я(у0**, а0**( = 278/дн., ((у**, а**) = 263$/дн.

Рассмотрим теперь вопрос о рентабельности расхода на улучшение дизайна. Определим для данного случая рен­табельность СО(а) следующим соотношением:

С(а = [((а) - ( (0)]/а .                                 (5.99)

Используя выражение (5.88), получаем:

С((а) = [Я(у)/аЬ](у -х - а - а,).                            (5.100)

 

« Содержание


 ...  85  ... 


по автору: А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

по названию: А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я